从1,500,000教师库中查找(输入学校名称或教师姓名)
我要添加在此添加教师信息
按拼音查找大学老师
abc(ch)defghijklmnopqrs(sh)tuvwxyz(zh)
魏俊杰
5.0我来评喜爱度
所在大学:哈尔滨工业大学(威海)
所在院系:数学系
所在地区:山东
所在城市:威海
评论次数:0条  我要评论
本页网址:http://teacher.cucdc.com/laoshi/1504662.html
魏俊杰老师介绍
姓名
魏俊杰
职称
教授(博导)
职务
个人主页
联系方式
Email: weijj@hit.edu.cn Tel:5685363 (O)
经历
1975 — 1978 :东北师范大学数学系,学生
1992 — 1995 :吉林大学数学研究所, 获博士学位
1978 — 2001 :东北师范大学助教(1986)、讲师( 1988 )、
副教授( 1994 )、教授( 2001 )
2002 — 现在 :哈尔滨工业大学数学系 教授
其中:
1982.3--1983.1 安徽大学 进修
1993.5--1994.2 加拿大York 大学 访问学者
1997.9--1998.4 加拿大Dalhousie大学 访问学者
2000. 5--2000.7 美国 Mississippi州立大学 访问学者
2002.1--2003.1 西班牙Complutense大学 博士后
2003年 以来多次访问 加拿大的 Alberta大学和 Memorial大学
研究方向
微分方程与动力系统
论著成果
1 . 发表学术论文100余篇,其中已被SCI检索60余篇。2001年以来发表的主要论文目录:
[1] F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system,J. Differential Equations, 246(2009)1944-1977
[2] D. Fan and J. Wei, Bifurcation analysis of discrete survival red blood cells model,Communications in Nonlinear Science and Numerical Simulation, 14(2009) 3358-3368
[3] F. Yi, J. Wei and J. Shi, Global asymptotical behavior of the Lengyel–Epstein reaction–diffusion system,Applied Mathematics Letters, 22 (2009) 52-55
[4] B. Niu and J. Wei, Stability and bifurcation analysis in an amplitude equation with delayed feedback,Chaos, Solitons & Fractals, 37 (2008) 1362-1371
[5] C. Wang and J. Wei, Normal forms for NFDEs with parameters and application to the lossless transmission line, NONLINEAR DYNAMICS, 52 (2008) 199-206
[6] F. Yi, J. Wei and J. Shi, Diffusion-driven instability and bifurcation in the Lengyel–Epstein system, Nonlinear Analysis: Real World Applications, 9 (2008) 1038-1051
[7] Z. Jiang and J. Wei, Stability and bifurcation analysis in a delayed SIR model, Chaos, Solitons & Fractals 35(2008) 609-619
[8] C. Wang and J. Wei, Bifurcation Analysis on a Discrete Model of Nicholson Blowflies, J. Difference Equations and Applications 14(2008)7:737-746
[9] J. Wei and C. Zhang Bifurcation analysis in a class of neural networks with delays, Nonlinear Analysis Series B: Real World Applications 9(2008)5:2234-2252
[10] A. Wan and J. Wei, Bifurcation analysis in an approachable haematopoietic stem cells model, J. Math. Anal. Appl. 245(2008)276-285
[11] J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system, J. Differential Equations 245(2008) 2749-2770
[12] W. Jiang and J. Wei, Bifurcation analysis in van der Pol's oscillator with delayed feedback, J. Computational and Applied Mathematics, 213 (2008) 604-615
[13] D. Fan and J. Wei, Hopf bifurcation analysis in a tri-neuron network with time delay, Nonlinear Analysis: Real World Applications, 9 (2008) 9-25
[14] Y. Song, Y. Peng and J. Wei, Bifurcations for a predator-prey system with two delays. J. Math. Anal. Appl. 377(2008)466-479.
[15] Y. Qu and J. Wei, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear. Dynamics 49(2007)285-294
[16] Y. Song, J. Wei and Y. Yuan, Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators, J. Nonlinear Sciences 17 (2007) 145-166
[17] J. Wei and D. Fan, Hopf bifurcation analysis in a Mackey-Glass system, International . J. Bifurcation and Chaos 17(2007)6:2146-2157
[18] J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity 20 (2007) 2483-2498
[19] Y. Yuan, and J. Wei, Singularity analysis on a planar system with multiple delays, J. Dynam. Diff. Equns 19(2007)2:437-456
[20] Y. Song, J. Wei and Y. Yuan, Bifurcation analysis on a survival red blood cells model, J. Math. Anal. Appl. 316(2006)459-471
[21] J. Wei and W. Jiang, Stability and bifurcation analysis in a neural network model with delays, DYNA. CONTI. DIS. IMPUL. SYST. A: Mathematical Analysis 13(2006) 177-192
[22] J. Wei and X. Zou, Bifurcation analysis of a population model and the resulting SIS epidemic model with delays, J. Comp. Appl. Math 197(2006)1:169-187
[23] Y. Yuan and J. Wei, Multiple bifurcation analysis in a neural network model with delays, International . J. Bifurcation and Chaos 16, No. 10 (2006) 2903-2913
[24] W. Jiang and J. Wei, Stability and bifurcation analysis in Van der Pol oscillator with delayed feedback, J. Sound and Vibration 283(2005) 801-819
[25] W. Jiang and J. Wei, Bifurcation analysis in a limit cycle oscillator with delayed feedback, Chaos, Solitons & Fractals, 23 (2005) 817-831
[26] Y. Song, M. Han and J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D: Nonlinear Phenomena, 200 (2005)185-204
[27] X. Li and J. Wei, Stability and bifurcation analysis on a delayed neural network model, International, J. Bifuecation and Chaos 15(2004)11:28839-2893
[28] Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system, J. Math. Anal. Appl. 301(2005) 1:1-21
[29] J. Wei and Michael. Y. Li Hopf bifurcation analysis in a delayed Nicholson blowflies equation, Nonlinear Analysis 60(2005) 7:1351-1367
[30] J. Wei and C. Zhang, Bifurcation in a two-dimensional neural network model with delay, Applied Mathematics and Mechanics-English 26(2005)2:210-217
[31] J. Wei and Y. Yuan, Synchronized Hopf bifurcation analysis in a neural network model with delays, J. Math. Anal. App. 312(2005) 1:205-229
[32] X. Li and J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos, Solitons & Fractals, 26 (2005) 519-526
[33] Y. Song, J. Wei and M. Han, Local and global Hopf bifurcation in a delayed hematopoiesis model International, J. Bifuecation and Chaos 14(2004)11: 3909-3919
[34] J. Wei and M. G. Velarde, Bifurcation analysis and existence of periodic solutions in a simple neural network with delays, Chaos 14(2004)3:940-953
[35] X. Meng and J. Wei, Stability and bifurcation of mutual system with time delay, Chaos, Solitons and Fractals 21(2004)729-740
[36] C. Zhang and J. Wei, Stability and bifurcation analysis in a kind of business cycle model with delay, Chaos, Solitons and Fractals 22(2004)883-896
[37] J. Wei and C. Zhang, Stability analysis in a first-order complex differential equations with delay, Nonlinear Analysis 59(2004)657-671
[38] J. Wei and Michael Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays, Physica D 198(2004)106-119
[39] Y. Song and J. Wei, Bifurcation analysis for Chen-s system with delayed feedback and its application to control of chaos, Chaos,Solitons and Fractals 22(2004)75-91
[40] R. Zhang, J. Wei and Q. Huang, Hopf bifurcations of bi-parameter ordinary differential systems, International Journal of ifurcation and Chaos 2003
[41] S. Ruan, J. Wei and J. Wu, Bifurcation from a homoclinic orbit in partial functional differential equations, Discrete and Continuous Dynamical Systems A.9(2003)5: 1293-1322
[42] R. Zhang, J. Wei and Q. Huang, Hopf bifurcations of bi-parameter ordinary differential equations International , J. Bifurcation and Chaos 13(2003) 1545-1560
[43] S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, DYNA. CONTI. DIS. IMPUL. SYST. A: Mathematical Analysis 10(2003) 863-874
[44] D. Jiang and J. Wei, Monotone method for first and second-order periodic boundary value problems and periodic solutions of functional differential equations, Nonlinear Analysis 50(2002)885-898
[45] 魏俊杰, 阮士贵, 中立型微分方程零解的稳定性与 Hopf分支, 数学学报, 49(2002)1:93-104
[46] J. Wei and M. G. Velarde, Oscillatory phenomena and stability of periodic solutions in a simple neural network with delay, Nonlinear Phenomena in Complex Systems 5(2002)4:407-417
[47] R. Zhang, J. Wei and J. Wu, On subharmonic solutions of systems of difference equations with periodic perturbations. Part I: Existence, J. Math. Anal. Appl 275(2002)495-511
[48] R. Zhang, J. Wei and J. Wu, On subharmonic solutions of systems of difference equations with periodic perturbations. Part II: Multiplicity and stability, J. Math. Anal. Appl. 276(2002)477-496
[49] S. Ruan and J. Wei, On the zeros of third degree exponential polynomial with applications to a delayed model for the control of testosteron , IMA J. Math. Appl. Medi .Bio 18(2001)41-52
[50] D. Jiang and J. Wei, Existence of positive periodic solutions for Volterra intergo-differential equations, 数学物理学报(英文版), 21B(2001)4:553-560
2. 科研项目:
(1) 非线性泛函微分方程理论及应用,国家自然科学基金重点项目(1999 .1-2003.12),项目组成员;
(2) 时滞微分方程的分支理论及应用,国家自然科学基金面上项目(2005.1-2008.12), 主持人;
(3) 泛函微分方程的分支理论及应用,教育部博士点基金项目(2006.1-2009.12), 主持人;
(4) 具时滞的动力系统的分支理论及应用,国家自然科学基金面上项目(2009.1-2011.12), 主持人.
3. 为第一作者的项目“泛函微分方程的分支理论及应用”获黑龙江省2006年自然科学二等奖。
教学活动
常微分方程 —— 本科
偏微分方程—— 本科
泛函微分方程—— 研究生
常微分方程分支理论—— 研究生
魏俊杰老师相关教学资源
  • 哈尔滨工业大学(威海)教学资源
  • 魏俊杰老师课程教学资源
魏俊杰老师教学评价(0条)
沟通交流、共同成长。欢迎您参与评论留言!
魏俊杰留言请在下面的评论框中输入您想说的话:)
我要评论(500字以内)
提示:请登录后提交!登录 快速注册
更多>>同院系教师