从1,500,000教师库中查找(输入学校名称或教师姓名)
林福荣老师介绍
林福荣 [ 教授 ] 数学系 管理个人简历
性别:男
出生日期:1964年12月28日
职务:
学术兼职:
社会兼职:
电话:0754-2903747
手机:13642235696
传真:
E-mail:frlin@stu.edu.cn
学历:
1985年07月毕业于复旦大学,获学士学位;
1988年07月毕业于复旦大学,获硕士学位;
1995年09月毕业于香港大学,获博士学位;
工作经历:
1988年07月-1991年11月在汕头大学任助教;
1991年12月-1997年11月在汕头大学任讲师;
1997年12月-2002年11月在汕头大学任副教授;
2002年12月--- 在汕头大学任教授。
担任课程:
本科生:《数值分析》,《矩阵计算》,《泛函分析》,《数学模型》,《运筹学》,《数值逼近》,《高等数学》,《概率统计》
研究生:《数值逼近》,《科学计算方法》,《矩阵计算》,《泛函分析》,《积分方程数值解》
主要研究兴趣:
数值代数
获奖情况:
2001年,汕头市优秀教师。
2001年,广东省数学建模竞赛优秀指导教师。
2004年,第五届汕头市十佳"青年科技带头人"。
2006年,汕头市劳动模范。
承担项目:
国家基金:
弗雷德霍姆方程的预处理迭代解法 (2003.1—2005.12)
求解Fredholm积分方程的带预处理的共轭梯度法(2000.1–2000.12)
省基金:
Toeplitz方程组的预处理迭代解法及其应用(2003.1—2005.12)
Fredholm积分方程的快速求解法研究(98.1—99.12)
研究成果:
论文:
1. M. Ng, F. Lin and R. Chan, Construction of Preconditioners for Wiener-Hopf Equations by Operator Splitting, Applied Mathematics and Computation, 72 (1995), pp. 77—96.
2. R. Chan and F.R. Lin, Preconditioned Conjugate Gradient Methods for Integral Equations of the Second Kind Defined on the Half-line, J. of Computational Mathematics, 14 (1996), pp. 223—236.
3. F. R. Lin and M.K. Ng, Higher-order Quadratures for Circulant Preconditioned Wiener-Hopf Equations, BIT, 36 (1996), pp. 110—121.
4. F. R. Lin, M.K. Ng and R. Chan, Preconditioners for Wiener-Hopf Equations with High Order Quadrature rules, SIAM J. Numer. Anal., 34(1997),pp. 1418--1431.
5. R. Chan, F. R. Lin and W. F. Ng, Fast Dense Matrix Method for the Solution of Integral Equations of the Second Kind, Numerical Mathematics — a Journal of Chinese Universities, 7(1998), No.1, pp. 105—120.
6. F. R. Lin and M. K. Ng, Fast Preconditioned Iterative Methods for Convolution-type Integral Equations, BIT, 40 (2000), pp. 336—350.
7. F. R. Lin, Notes on Wavelet-like Basis Matrices, Computers and Mathematics with applications, 40 (2000), pp. 761—769.
8. F. R. Lin, Preconditioners for Block Toeplitz Systems Based on Circulant Preconditioners, Numerical Algorithms, 26 (2001), pp. 365—379.
9. F. R. Lin, Genuine-Optimal Circulant Preconditioners for Wiener-Hopf Equations, Journal of Computational Mathematics, 19 (2001), pp. 629—638.
10. R. Chan, F. R. Lin, and C. F. Chan, A Fast Solver for Fredholm Equations of the Second Kind with Weakly Singular Kernels, Journal of Numerical Mathematics, 10 (2002), pp. 13—36.
11. F. R. Lin, X. Q. Jin, and S. L. Lei, Strang-type Preconditioners for Solving Linear Systems from Delay Differential Equations, BIT, 43 (2003), pp. 136—149.
12. Fu-Rong Lin, Wai-Ki Ching,and Michael K. Ng, Discrete Wavelet Transforms for Toeplitz Matrices,Linear Algebra and Its Applications,370 (2003), pp. 269—285.
13. Fu-Rong Lin and M. Ng, Super-Resolution Image Reconstruction with Estimation of Low-Resolution Frames, International Journal of Applied Mathematics, 13 (2003), pp. 99--117.
14. F. R. Lin, Preconditioned Iterative Methods for the Numerical Solution of Fredholm Equations of the Second Kind, Calcolo, 40 (2003), no. 4, pp. 231—248.
15. Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng, Fast Inversion of Triangular Toeplitz Matrices, Theoretical Computer Science, 315 (2004), no. 2-3, pp. 511—523 .
16. Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng, Preconditioning Regularized Least Squares Problems arising from High-Resolution Image Reconstruction from Low-Resolution Frames, Linear Algebra and Its Applications, 301 (2004), pp. 149—168.
17. F. R. Lin and W. K. Ching, Inverse Toeplitz Preconditioners for Hermitian Toeplitz Systems, Numerical Linear Algebra with Applications, 12 (2005), no. 2-3, pp. 221—229.
18. Fu-Rong Lin, Michael K. Ng, and Wai-Ki Ching, Factorized Banded Inverse Preconditioners for Matrices with Toeplitz Structure, SIAM J Scientific Computing, 26 (2005), no. 6, pp. 1852—1870.
19. Fu-Rong Lin and Wei-Fu Fang, A Linear Integral Equation Approach to the Robin Inverse Problem, Inverse Problems, 21 (2005), pp. 1757—1772.
性别:男
出生日期:1964年12月28日
职务:
学术兼职:
社会兼职:
电话:0754-2903747
手机:13642235696
传真:
E-mail:frlin@stu.edu.cn
学历:
1985年07月毕业于复旦大学,获学士学位;
1988年07月毕业于复旦大学,获硕士学位;
1995年09月毕业于香港大学,获博士学位;
工作经历:
1988年07月-1991年11月在汕头大学任助教;
1991年12月-1997年11月在汕头大学任讲师;
1997年12月-2002年11月在汕头大学任副教授;
2002年12月--- 在汕头大学任教授。
担任课程:
本科生:《数值分析》,《矩阵计算》,《泛函分析》,《数学模型》,《运筹学》,《数值逼近》,《高等数学》,《概率统计》
研究生:《数值逼近》,《科学计算方法》,《矩阵计算》,《泛函分析》,《积分方程数值解》
主要研究兴趣:
数值代数
获奖情况:
2001年,汕头市优秀教师。
2001年,广东省数学建模竞赛优秀指导教师。
2004年,第五届汕头市十佳"青年科技带头人"。
2006年,汕头市劳动模范。
承担项目:
国家基金:
弗雷德霍姆方程的预处理迭代解法 (2003.1—2005.12)
求解Fredholm积分方程的带预处理的共轭梯度法(2000.1–2000.12)
省基金:
Toeplitz方程组的预处理迭代解法及其应用(2003.1—2005.12)
Fredholm积分方程的快速求解法研究(98.1—99.12)
研究成果:
论文:
1. M. Ng, F. Lin and R. Chan, Construction of Preconditioners for Wiener-Hopf Equations by Operator Splitting, Applied Mathematics and Computation, 72 (1995), pp. 77—96.
2. R. Chan and F.R. Lin, Preconditioned Conjugate Gradient Methods for Integral Equations of the Second Kind Defined on the Half-line, J. of Computational Mathematics, 14 (1996), pp. 223—236.
3. F. R. Lin and M.K. Ng, Higher-order Quadratures for Circulant Preconditioned Wiener-Hopf Equations, BIT, 36 (1996), pp. 110—121.
4. F. R. Lin, M.K. Ng and R. Chan, Preconditioners for Wiener-Hopf Equations with High Order Quadrature rules, SIAM J. Numer. Anal., 34(1997),pp. 1418--1431.
5. R. Chan, F. R. Lin and W. F. Ng, Fast Dense Matrix Method for the Solution of Integral Equations of the Second Kind, Numerical Mathematics — a Journal of Chinese Universities, 7(1998), No.1, pp. 105—120.
6. F. R. Lin and M. K. Ng, Fast Preconditioned Iterative Methods for Convolution-type Integral Equations, BIT, 40 (2000), pp. 336—350.
7. F. R. Lin, Notes on Wavelet-like Basis Matrices, Computers and Mathematics with applications, 40 (2000), pp. 761—769.
8. F. R. Lin, Preconditioners for Block Toeplitz Systems Based on Circulant Preconditioners, Numerical Algorithms, 26 (2001), pp. 365—379.
9. F. R. Lin, Genuine-Optimal Circulant Preconditioners for Wiener-Hopf Equations, Journal of Computational Mathematics, 19 (2001), pp. 629—638.
10. R. Chan, F. R. Lin, and C. F. Chan, A Fast Solver for Fredholm Equations of the Second Kind with Weakly Singular Kernels, Journal of Numerical Mathematics, 10 (2002), pp. 13—36.
11. F. R. Lin, X. Q. Jin, and S. L. Lei, Strang-type Preconditioners for Solving Linear Systems from Delay Differential Equations, BIT, 43 (2003), pp. 136—149.
12. Fu-Rong Lin, Wai-Ki Ching,and Michael K. Ng, Discrete Wavelet Transforms for Toeplitz Matrices,Linear Algebra and Its Applications,370 (2003), pp. 269—285.
13. Fu-Rong Lin and M. Ng, Super-Resolution Image Reconstruction with Estimation of Low-Resolution Frames, International Journal of Applied Mathematics, 13 (2003), pp. 99--117.
14. F. R. Lin, Preconditioned Iterative Methods for the Numerical Solution of Fredholm Equations of the Second Kind, Calcolo, 40 (2003), no. 4, pp. 231—248.
15. Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng, Fast Inversion of Triangular Toeplitz Matrices, Theoretical Computer Science, 315 (2004), no. 2-3, pp. 511—523 .
16. Fu-Rong Lin, Wai-Ki Ching, and Michael K. Ng, Preconditioning Regularized Least Squares Problems arising from High-Resolution Image Reconstruction from Low-Resolution Frames, Linear Algebra and Its Applications, 301 (2004), pp. 149—168.
17. F. R. Lin and W. K. Ching, Inverse Toeplitz Preconditioners for Hermitian Toeplitz Systems, Numerical Linear Algebra with Applications, 12 (2005), no. 2-3, pp. 221—229.
18. Fu-Rong Lin, Michael K. Ng, and Wai-Ki Ching, Factorized Banded Inverse Preconditioners for Matrices with Toeplitz Structure, SIAM J Scientific Computing, 26 (2005), no. 6, pp. 1852—1870.
19. Fu-Rong Lin and Wei-Fu Fang, A Linear Integral Equation Approach to the Robin Inverse Problem, Inverse Problems, 21 (2005), pp. 1757—1772.
林福荣老师相关教学资源