从1,500,000教师库中查找(输入学校名称或教师姓名)
王忠
5.0我来评喜爱度
王忠老师介绍
姓名: 王忠
性别: 男
学位: 博士
职称: 教授
教研室:
职务:
电子邮件:
电话:
简介
王忠, 汉族,博士,教授,1965年9月出生,内蒙古包头人。1986毕业于内蒙古民族大学数学系,并获得理学学士学位,1989年于内蒙古大学获理学硕士学位,1999年于内蒙古大学获理学博士学位。曾入选“内蒙古‘321人才工程’”第二层(省级学术带头人)和广东省“千百十”人才工程;2002年和2004年两次获得“肇庆市专业技术拔尖人才”称号;2002年获得广东省“南粤优秀教师”称号。1992年、1997年分别获得“国家教委科技进步奖”二等奖、三等奖;2003年和2005年分别获得“肇庆市科技进步”一等奖。现为内蒙古工业大学计算数学专业硕士生导师,美国《数学评论》(《Mathematics Review》)特约评论员。
研究领域:微分方程;研究方向:微分算子理论及其应用。研究微分算子的谱理论、亏指数理论、加权的边值问题和逆问题及其应用。谱理论主要定性定量分析微分算子的谱及其特征展开及其应用;亏指数理论重点研究广义微分算子、对称微分算子和J-对称微分算子的亏指数及其应用;加权的边值问题主要研究不定的Sturm-Liouville边值问题和高阶不定边值问题及其应用;谱方法的数值分析;逆问题主要研究S-L逆谱问题。
参加并完成了两项国家自然科学基金项目“微分算子谱的定性定量分析”(19571044)和“非自伴微分算子的谱及其特征展开”(19871037);承担并完成了两项内蒙古自然科学基金项目“常微分算子谱理论”(9610E12),和“微分算子的谱理论”(990301-1)。承担并完成广东省自然科学基金项目“常微分算子谱理论研究及其应用”(022001),广东省“千百十” 基金项目“非自伴常微分算子谱分析”(Q校02052),和广东省高校自然科学基金项目“微分算子的谱的定性分析及其应用”(Z02075)。现承担广东省自然科学基金项目“微分算子谱分析及其应用”(5012285)。完成的科研工作包括自伴微分算子谱理论的研究及其谱的定量定性分析;广义微分算子、J-对称微分算子亏指数理论的研究;向量值J-对称微分算子的J-自伴边条件的完全描述;J-自伴微分算子谱理论的研究及其定量定性分析;非自伴微分算子的特征问题;不定的Sturm-Liouville问题的研究;Volterra—Stieltjes积微分算子理论等,这些成果发表在《数学学报》、《J. Math. AnaL. Appl.》、《J. Spctr.Math. Appl.》、《Ann Diff. Equ.》、《Pacific J. Appl. Math.》、《J. System and Complexity》、《 J. of Comput. and Appl. Math》、《数学进展》、《系统科学与数学》、《内蒙古大学学报》等国内外重要学术期刊上,发表论文50余篇,大部分文章受到美国《Mathematics Review》摘评。
性别: 男
学位: 博士
职称: 教授
教研室:
职务:
电子邮件:
电话:
简介
王忠, 汉族,博士,教授,1965年9月出生,内蒙古包头人。1986毕业于内蒙古民族大学数学系,并获得理学学士学位,1989年于内蒙古大学获理学硕士学位,1999年于内蒙古大学获理学博士学位。曾入选“内蒙古‘321人才工程’”第二层(省级学术带头人)和广东省“千百十”人才工程;2002年和2004年两次获得“肇庆市专业技术拔尖人才”称号;2002年获得广东省“南粤优秀教师”称号。1992年、1997年分别获得“国家教委科技进步奖”二等奖、三等奖;2003年和2005年分别获得“肇庆市科技进步”一等奖。现为内蒙古工业大学计算数学专业硕士生导师,美国《数学评论》(《Mathematics Review》)特约评论员。
研究领域:微分方程;研究方向:微分算子理论及其应用。研究微分算子的谱理论、亏指数理论、加权的边值问题和逆问题及其应用。谱理论主要定性定量分析微分算子的谱及其特征展开及其应用;亏指数理论重点研究广义微分算子、对称微分算子和J-对称微分算子的亏指数及其应用;加权的边值问题主要研究不定的Sturm-Liouville边值问题和高阶不定边值问题及其应用;谱方法的数值分析;逆问题主要研究S-L逆谱问题。
参加并完成了两项国家自然科学基金项目“微分算子谱的定性定量分析”(19571044)和“非自伴微分算子的谱及其特征展开”(19871037);承担并完成了两项内蒙古自然科学基金项目“常微分算子谱理论”(9610E12),和“微分算子的谱理论”(990301-1)。承担并完成广东省自然科学基金项目“常微分算子谱理论研究及其应用”(022001),广东省“千百十” 基金项目“非自伴常微分算子谱分析”(Q校02052),和广东省高校自然科学基金项目“微分算子的谱的定性分析及其应用”(Z02075)。现承担广东省自然科学基金项目“微分算子谱分析及其应用”(5012285)。完成的科研工作包括自伴微分算子谱理论的研究及其谱的定量定性分析;广义微分算子、J-对称微分算子亏指数理论的研究;向量值J-对称微分算子的J-自伴边条件的完全描述;J-自伴微分算子谱理论的研究及其定量定性分析;非自伴微分算子的特征问题;不定的Sturm-Liouville问题的研究;Volterra—Stieltjes积微分算子理论等,这些成果发表在《数学学报》、《J. Math. AnaL. Appl.》、《J. Spctr.Math. Appl.》、《Ann Diff. Equ.》、《Pacific J. Appl. Math.》、《J. System and Complexity》、《 J. of Comput. and Appl. Math》、《数学进展》、《系统科学与数学》、《内蒙古大学学报》等国内外重要学术期刊上,发表论文50余篇,大部分文章受到美国《Mathematics Review》摘评。
王忠老师相关教学资源